

500 mA CMOS LDO Regulator

FEATURES

- Guaranteed 500 mA peak output current
- Low dropout voltage of 300 mV typical at 500 mA
- Stable with ceramic output capacitor
- External 10 nF bypass capacitor for low noise
- **Quick-start feature**
- Under voltage lockout
- No-load ground current of 55 µA typical
- Full-load ground current of 85 µA typical
- $\pm 1.0\%$ initial accuracy (V_{OUT} ≥ 2.0 V)
- ±2.0% accuracy over temperature (V_{OUT} ≥ 2.0 V)
- "Zero" current shutdown mode
- Fold-back current limit
- Thermal protection
- 5-lead TSOT-23 and 6-pad TDFN packages

APPLICATIONS

- Cellular phones
- **Battery-powered devices**
- **Consumer Electronics**

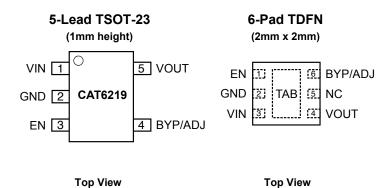
DESCRIPTION

The CAT6219 is a 500 mA CMOS low dropout regulator that provides fast response time during load current and line voltage changes.

The guick-start feature allows the use of an external bypass capacitor to reduce the overall output noise without affecting the turn-on time of just 150 µs.

With zero shutdown current and low ground current of 55 µA typical, the CAT6219 is ideal for battery-operated devices with supply voltages from 2.3 V to 5.5 V. An internal under voltage lockout circuit disables the output at supply voltages under 2.15 V typical.

The CAT6219 offers 1% initial accuracy and low dropout voltage, 300 mV typical at 500 mA. Stable operation is provided with a small value ceramic capacitor, reducing required board space and component cost.


Other features include current limit and thermal protection.


The LDO is available in fixed and adjustable output in the low profile (1 mm max height) 5-lead TSOT23 and in the 6-pad 2 mm x 2 mm TDFN packages.

For Ordering Information details, see page 9.

PIN CONFIGURATION

TYPICAL APPLICATION CIRCUIT

PIN DESCRIPTIONS

Name	Function		
VIN	Supply voltage input.		
GND	Ground reference.		
EN Enable input (active high); a 2.5MΩ pull-down resistor is provided.			
BYP	Optional bypass capacitor connection for noise reduction and PSRR enhancing.		
ADJ Adjustable input. Feedback pin connected to resistor divider.			
VOUT	LDO Output Voltage.		
TAB	To be connected to the ground plane on PCB		

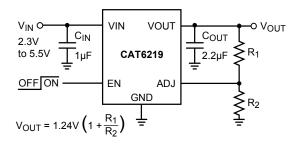


Figure 1. Adjustable Output LDO

PIN FUNCTION

VIN is the supply pin for the LDO. A small 1 μ F ceramic bypass capacitor is required between the V_{IN} pin and ground near the device. When using longer connections to the power supply, C_{IN} value can be increased without limit. The operating input voltage range is from 2.3 V to 5.5 V.

EN is the enable control logic (active high) for the regulator output. It has a 2.5 M Ω pull-down resistor, which assures that if EN pin is left open, the circuit is disabled.

VOUT is the LDO regulator output. A small 2.2 μ F ceramic bypass capacitor is required between the VOUT pin and ground. For better transient response, its value can be increased to 4.7 μ F.

The capacitor should be located near the device. For the SOT23-5 package, a continuous 500 mA output current may turn-on the thermal protection. A 250 Ω internal shutdown switch discharges the output capacitor in the no-load condition.

GND is the ground reference for the LDO. The pin must be connected to the ground plane on the PCB.

BYP is the reference bypass pin. An optional 0.01 μ F capacitor can be connected between BYP pin and GND to reduce the output noise and enhance the PSRR at high frequency.

ADJ is the adjustable input pin for the adjustable LDO. The pin is connected to the resistor voltage divider.

ABSOLUTE MAXIMUM RATINGS (1)

Parameter	Rating	Unit
V _{IN}	0 to 6.5	V
V_{EN}, V_{OUT}	-0.3 to V _{IN} +0.3	V
Junction Temperature, T _J	+150	°C
Power Dissipation, P _D	Internally Limited (2)	mW
Storage Temperature Range, T _S	-65 to +150	°C
Lead Temperature (soldering, 5 sec.)	260	°C
ESD Rating (Human Body Model)	3	kV

RECOMMENDED OPERATING CONDITIONS (3)

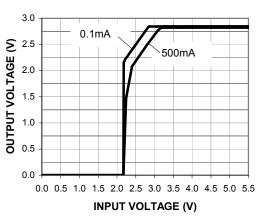
Parameter	Range	Unit
V_{IN}	2.3 to 5.5	V
V _{EN}	0 to V _{IN}	V
Junction Temperature Range, T _J	-40 to +125	°C
Package Thermal Resistance (SOT23-5), θ _{JA}	235	°C/W

Typical application circuit with external components is shown on page 1.

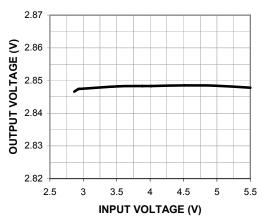
- (1) Exceeding maximum rating may damage the device.
- (2) The maximum allowable power dissipation at any T_A (ambient temperature) is P_{Dmax} = (T_{Jmax} T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- (3) The device is not guaranteed to work outside its operating rating.

ELECTRICAL OPERATING CHARACTERISTICS (1)

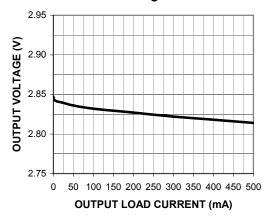
 V_{IN} = V_{OUT} + 1.0 V, V_{EN} = High, I_{OUT} = 100 μ A, C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, ambient temperature of 25°C (over recommended operating conditions unless specified otherwise). **Bold numbers** apply for the entire junction temperature range.

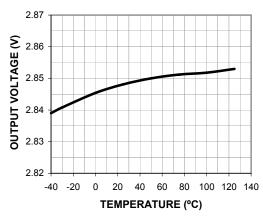

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
\/	Output Voltage Accuracy	Initial acquire out for V > 2.0 V (4)	-1.0		+1.0	%	
V _{OUT-ACC}	Output Voltage Accuracy	Initial accuracy for $V_{OUT} \ge 2.0 V^{(4)}$	-2.0		+2.0		
TC _{OUT}	Output Voltage Temp. Coefficient			40		ppm/°C	
V	Line Regulation	V _{IN} = V _{OUT} + 1.0 V to 5.5 V	-0.2	±0.1	+0.2	%/V	
V_{R-LINE}	Line Regulation	VIN = V _{OUT} + 1.0 V to 3.3 V	-0.4		+0.4		
V_{R-LOAD}	Load Regulation	I _{OUT} = 100 μA to 500 mA		1	1.5	- %	
▼ R-LOAD	Load Regulation	1001 - 100 μΑ το 300 πΑ			2		
V _{DROP} I	Dropout Voltage (2)	I _{OUT} = 500 mA		300	400	mV	
▼ DROP		1001 - 300 IIIA			500	1110	
		I _{OUT} = 0 μA		55	75	μΑ	
I_{GND}	Ground Current	1001 - 0 μΑ			90		
		I _{OUT} = 500 mA		85			
 	Shutdown Ground Current	V _{EN} < 0.4 V			1	μΑ	
I _{GND-SD}		V _{EN} < 0.4 V			2		
PSRR	Power Supply Rejection Ratio	$f = 1 \text{ kHz}, C_{BYP} = 10 \text{ nF}$		64		- dB	
TORK		$f = 20 \text{ kHz}, C_{BYP} = 10 \text{ nF}$		54			
I _{SC}	Output short circuit current limit	V _{OUT} = 0 V		200		mA	
T _{ON}	Turn-On Time	C _{BYP} = 10 nF		150		μs	
e _N	Output Noise Voltage (3)	BW = 10 Hz to 100 kHz		45		μVrms	
R _{OUT-SH}	Shutdown Switch Resistance			250		Ω	
R _{EN}	Enable pull-down resistor			2.5		МΩ	
$V_{\text{IN-UVLO}}$	Under voltage lockout threshold			2.15		V	
ESR	C _{OUT} equivalent series resistance		5		500	mΩ	
V_{ADJ}	Adjustable input voltage	I _{OUT} = 100 μA	1.2	1.24	1.27	V	
Enable In	put						
	Logic High Level	$V_{IN} = 2.3 \text{ to } 5.5 \text{ V}$	1.8			\ \	
V _{HI}		V_{IN} = 2.3 to 5.5 V, 0°C to +125°C junction temperature	1.6				
V _{LO}	Logic Low Level	V _{IN} = 2.3 to 5.5 V			0.4	V	
1	Enoble Input Current	V _{EN} = 0.4 V		0.15	1	μА	
I _{EN}	Enable Input Current	$V_{EN} = V_{IN}$		1.5	4		
Thermal	Protection						
T _{SD}	Thermal Shutdown			160		°C	
T _{HYS}	Thermal Hysteresis			10		°C	

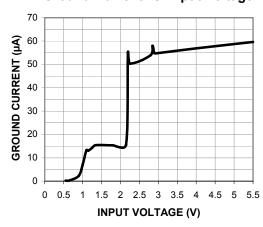
- (1) Specification for 2.85V output version unless specified otherwise.
- (2) Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. During test, the input voltage stays always above the minimum 2.3V.
- (3) Specification for 1.8V output version.
- (4) For VOUT < 2.0V, the initial accuracy is $\pm 2\%$ and across temperature $\pm 3\%$.

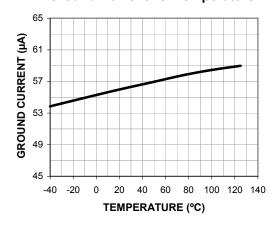

TYPICAL CHARACTERISTICS (shown for 2.85 V output version)

 V_{IN} = 3.85 V, I_{OUT} = 100 μ A, C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, C_{BYP} = 10 nF, T_A = 25°C unless otherwise specified.

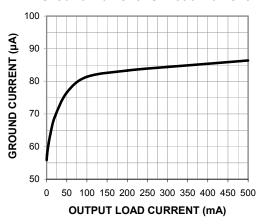

Dropout Characteristics

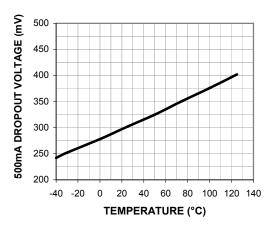

Line Regulation


Load Regulation

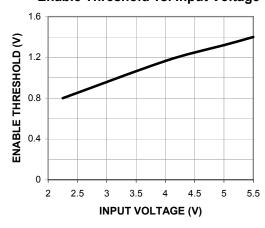

Output Voltage vs. Temperature

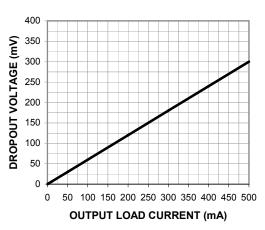
Ground Current vs. Input Voltage

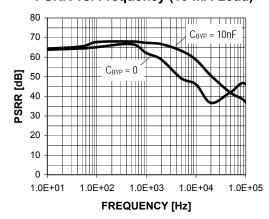

Ground Current vs. Temperature


TYPICAL CHARACTERISTICS (shown for 2.85 V output option)

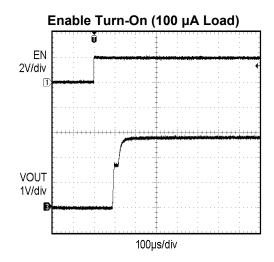
 V_{IN} = 3.85 V, I_{OUT} = 100 μ A, C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, C_{BYP} = 10 nF, T_A = 25°C unless otherwise specified.

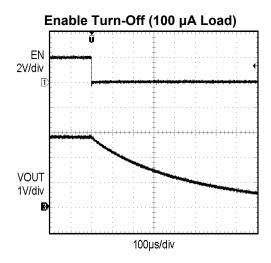

Ground Current vs. Load Current

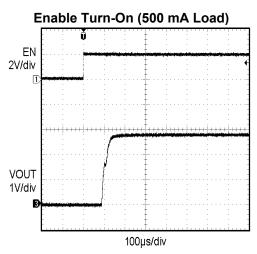

Dropout vs. Temperature (500mA Load)

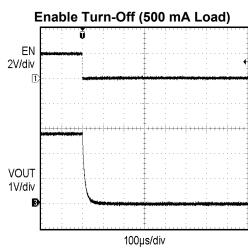

Enable Threshold vs. Input Voltage

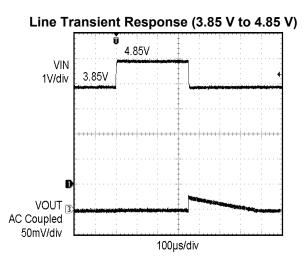
Dropout vs. Load Current

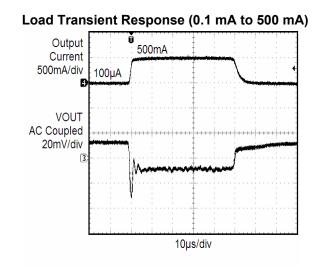


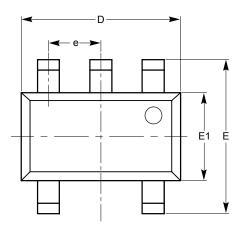

PSRR vs. Frequency (10 mA Load)

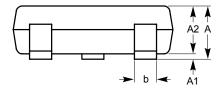



TRANSIENT CHARACTERISTICS (shown for 2.85 V output option)

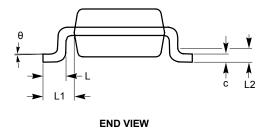

 V_{IN} = 3.85 V, I_{OUT} = 100 μ A, C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, C_{BYP} = 10 nF, T_A = 25°C unless otherwise specified.





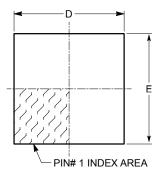

PACKAGE OUTLINE DRAWINGS

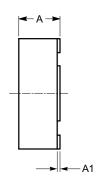
TSOT-23 5-Lead (TD) (1)(2)

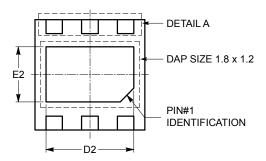


TOP VIEW

SYMBOL	MIN	NOM	MAX
Α			1.00
A1	0.01	0.05	0.10
A2	0.80	0.87	0.90
b	0.30		0.45
С	0.12	0.15	0.20
D	2.90 BSC		
Е		2.80 BSC	
E1		1.60 BSC	
е		0.95 TYP	
L	0.30	0.40	0.50
L1	0.60 REF		
L2	0.25 BSC		
θ	0°		8°

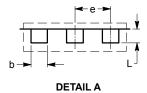


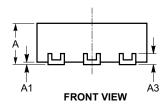

SIDE VIEW



- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MO-193.

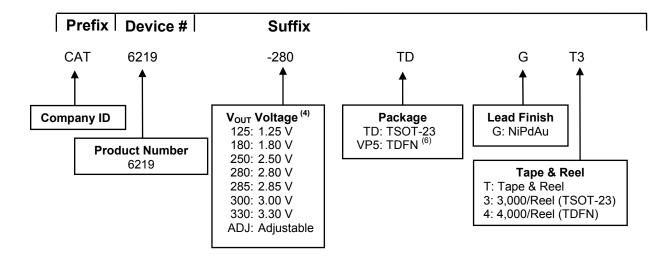
TDFN 6-Pad 2 mm x 2 mm (VP5) $^{(1)(2)}$




TOP VIEW

SIDE VIEW

BOTTOM VIEW


SYMBOL	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.25	0.30	0.35
D	1.90	2.00	2.10
D2	1.50	1.60	1.70
Е	1.90	2.00	2.10
E2	0.90	1.00	1.10
е	0.65 TYP		
L	0.15	0.25	0.35

- (1) All dimensions are in millimeters.
- (2) Complies with JEDEC standard MO-229.

EXAMPLE OF ORDERING INFORMATION

ORDERING INFORMATION

Orderable Part Number	V _{OUT} Voltage ⁽⁵⁾	Package	Quantity per Reel
CAT6219-125TDGT3	1.25 V	TSOT-23-5	3,000
CAT6219-180TDGT3	1.80 V	TSOT-23-5	3,000
CAT6219-250TDGT3	2.50 V	TSOT-23-5	3,000
CAT6219-280TDGT3	2.80 V	TSOT-23-5	3,000
CAT6219-285TDGT3 (4)	2.85 V	TSOT-23-5	3,000
CAT6219-300TDGT3	3.00 V	TSOT-23-5	3,000
CAT6219-330TDGT3	3.30 V	TSOT-23-5	3,000
CAT6219-ADJTDGT3	1.25 V to 5 V	TSOT-23-5	3,000
CAT6219180VP5GT4*	1.80 V	TDFN-6	4,000
CAT6219VP5330GT4*	3.30 V	TDFN-6	4,000

^{*} Part number is not exactly the same as the "Example of Ordering Information" shown above. For part numbers marked with * there are NO hyphens in the orderable part numbers.

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The standard lead finish is NiPdAu pre-plated (PPF) lead frames.
- (3) The device used in the above example is a CAT6219-280TDGT3 (V_{OUT} = 2.80 V, in a TSOT-23 package, NiPdAu, Tape & Reel, 3,000/Reel).
- (4) Standard voltages are 1.80 V, 2.80 V and 3.30 V. For other voltage options, please contact your nearest ON Semiconductor Sales office.
- (5) All output voltage options have the same marking.
- (6) Contact factory for availability.
- (7) Package Marking for CAT6219 family is "RV.

REVISION HISTORY

Date	Rev.	Reason
20-Apr-07	Α	Initial Release
07-Nov-07	В	Update Package Outline Drawings Update Example of Ordering Information Add "MD-" to Document Number
08-Feb-08	C	Update Electrical Operating Characteristics
20-May-08	D	Add Adjustable and other voltage options Update Package Outline Drawing – TDFN 6-Pad Add link to Top Mark Codes
19-Nov-08	Е	Change logo and fine print to ON Semiconductor
22-Jun-09	F	Update Pin Configuration Update Pin Description Update Example of Ordering Information
14-Jul-09	G	Update Ordering Information table
09-Sept-09	Н	Update Features and Electrical Operating Characteristics

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center: Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative